

Messung von Neutronen -Probleme und alternative Detektoren

Autor: Thales SCHRÖTTNER Systementwicklung Radiation Safety and Applications Seibersdorf Labor GmbH, 2444 Seibersdorf thales.schroettner@seibersdorf-laboratories.at

Inhalt

- Nachweisreaktionen
- Detektionsverfahren
- Energieabhängigkeit der Detektorempfindlichkeit
- He-3 (Vorteile, Produktion, Verknappung)
- Alternative Detektoren
- Entwicklung in Seibersdorf

Nachweisreaktionen

■ **n** + ³**He** \rightarrow ³**H**_(184 keV) + p_(580 keV) (σ ~5333 barn, 0.5 bis 5 ppm ³He)

■ **n** + ¹⁰**B** → ⁷Li_(1.1 MeV) +
$$\alpha_{(1.8 MeV)}$$
 (7%)
→ ⁷Li*_(840 keV) + $\alpha_{(1.47 MeV)}$ (93%)
⁷Li* → ⁷Li + $\gamma_{(478 keV)}$
(σ ~3840 barn, ~ 20% ¹⁰B)

■ **n** + ⁶Li
$$\rightarrow$$
 ³H_(2.73 MeV) + α _(2.05 MeV)
(σ ~941 barn, ~7.5% ⁶Li)

•
$$n + {}^{14}N \rightarrow {}^{14}C + p_{(0.6 \text{ MeV})}$$

Nachweisreaktionen

- Rückstoßprotonen (neue Plastik-Szintillatoren)
- **n** + ¹⁵⁵**Gd** \rightarrow ³**Gd**^{*} + γ + Konversionselektronen
- **n** + ¹⁵⁷**Gd** \rightarrow ³**Gd**^{*} + γ + Konversionselektronen
- n + ²³⁵U \rightarrow Spaltfragmente + ~160 MeV
- n + ²³⁹Pu \rightarrow Spaltfragmente + ~160 MeV
- Energieselektive Detektoren

z.B. ¹⁹⁷Au: 4.9 eV, ¹¹⁵In: 1.5 eV, ¹⁸¹Ta: 4.3 eV, ²³⁸U: 6.7 und 10.3 eV

Detektionsverfahren

- Proportionalzählrohr (Ar-Gasverstärkung)
- Szintillation
 heterogen → Absorption der Sekundärteilchen im Konverter homogen → Reabsorption des Lichts
- Halbleiter (kleine Fläche → niedrige Empfindlichkeit)
- Lumineszenz

Energieabhängigkeit der Detektorempfindlichkeit

Abb. 1: Wirkungsquerschnitte in Abhängigkeit von der Neutronenenergie (aus [2]).

Energieabhängigkeit der Detektorempfindlichkeit

Abb. 2: Strahlenbiologische Gewichtung von Neutronen in Abhängigkeit von der Neutronenenergie.

- H*(10) Umgebungs-Äquivaltentdosis E_{ap} E_{iso}
 - Effektive Dosis in einem parallelen Strahlungsfeld bei Bestrahlung von vorn
 - Effektive Dosis in einem isotropen Strahlungsfeld (aus [7])

³He - Vorteile

- Verfügbarkeit (ursprünglich Abfallprodukt)
- einfacher Aufbau
 preiswert
- hohe Zuverlässigkeit und Langzeitstabilität
- recht gute n/y Unterscheidung
- Peak im Energiespektrum
 Systemdiagnose
- HV <1kV (2-3 keV für BF₃)
- ungiftig

Abb. 3: ³He Impulshöhenverteilung.

³He - Produktion

- natürliches Vorkommen ~ 37000 t in der Atmosphäre
- Gewinnung aus Tritium (jährliche Produktion ~ 1/18 Tritiummenge)
- Anwendung: Neutronendetektoren, (Fusion)
- Verbrauch ~ 65 m³/a
 Produktion ~ 15 m³/a
- für Portalmonitore ~ 22 m³/a (Σ ca. 70 m³)
- Preissteigerung
 2008: 75 \$/I
 2011: 6500 \$/I

Tritium

- natürliches Vorkommen ~ 7.3 kg Atmosphäre
- 1955 bis 1988 in USA ~225 kg produziert davon noch ~50 kg vorh.
 → ~175 kg ³He produziert (~1350m³)
- <10% für zivile Zwecke (Lichtquellen und Fusionsforschung)</p>
- prod. im Reaktor (Linearbeschleuniger zu teuer)
- bis 1988 in Savannah River (K-Reaktor) ⁶Li + n → ³H + α + 4.8 MeV

- seit 1997 Produktion in Tennessee (Watts Bar-1)
 ziviler DWR mit Li statt B in speziellen Steuerstäben "Tritium Production Burnable Absorber Rods" (TPBA) Aufarbeitung in Savannah River Diffusionsprobleme!

Alternative Detektoren - ¹⁰B

- BF₃ gasgefüllte Proportionalzähler
 HV: 2-3 keV, schöner Peak, giftig
- Bor beschichtete Proportionalzähler

HV: <1 keV, 1 μm ¹⁰B₄C, ¹⁰B(n,α)⁷Li, Bündelung vieler dünner Röhren "straw detector" Absorptionsverluste → Impulsverteilung → breiter Peak Empfindlichkeit & n/γ-Diskriminierung abhängig vom Schwellwert (bzw. Temperatur)

Alternative Detektoren – ⁶Li

⁶Li dotierte Glasfasern

n/γ-Diskriminierung durch Analyse der Impulsform, PMT \rightarrow Langzeit-/Temperaturdrift \rightarrow Stabilisierung

⁶Li /Scintillator beschichtete Glasfasern

breiter Peak bei relativ hoher Energie, Potential für höchste Empfindlichkeit,

Abb. 7: ⁶Li beschichtete Glasfasern

Alternativdetektor – SL

- ZnS(Ag) mit ⁶LiF
 - ➔ hohe Lichtausbeute
- gute n/γ-Diskriminierung
- Detektorempfindlichkeit ~ 4 cm²
- Problem: Schwellwert beeinflusst n/γ-Diskriminierung und Empfindlichkeit
- noch zu charakterisierten:
 - Temperaturabhängigkeit
 - Langzeitstabilität/Drift

Alternativdetektor – SL

Abb. 8: Testdetektor um alte ³He Sonde zu ersetzen.

Quellenverzeichnis

- [1] Knoll, G. Radiation Detection and Measurement, fouth edn. (New York: John Wiley & Sons) (2010).
- [2] Vega-Carrillo, H.R., Response matrix of a multisphere neutron spectrometer with an 3He proportional counter. REVISTA MEXICANA DE F'ISICA 51 (1) 47–52 (2005).
- [3] Schuhmacher, H. Neutron Calibration Facilities. Radiat. Prot. Dosim. 110(1-4), 33-42 (2004).
- [4] International Organization for Standardization. Reference neutron radiations -- Part 1: Characteristics and methods of production; 2001-02 ISO 8529-1:2001/Corrigendum 1:2008.
- [5] International Organization for Standardization. Reference neutron radiations -- Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; 2000-08.
- [6] International Organization for Standardization. Reference neutron radiations -- Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence; 1998-11.
- [7] Vogt, H.G. Grundzüge des praktischen Strahlenschutzes. Hanser Verlag (2007)
- [8] Eisenhauer et al. Calibration Techniques for Neutron Personal Dosimetry. Radiat. Prot. Dosim. 10 (1-4), 43-57 (1985).
- [9] Kluge, H., Alevra, A. V., Jetzke, S., Knauf, K., Matzke, M., Weise, K. and Wittstock, J. Scattered neutron reference fields produced by radionuclide sources. Radiat. Prot. Dosim. 70, 327-330 (1997).
- [10] Silari M. Workspace characterization in mixed neutron gamma fields. Radiat. Prot. Dosim. Advanced Access. doi:10.1093/rpd/ncm395 (2007).
- [11] Marsh, J.W. High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nuclear Instruments and Methods in Physics Research A. 366, 340-348 (1995)
- [12] ICRP Publication 74: Conversion Coefficients for use in Radiological Protection against External Radiation. Annals of the ICRP Volume 26/3

cont...

Quellenverzeichnis

- [13] R.T. Kouzes et al., Neutron detection alternatives to ³He for national security applications, NIM A623 (2010), p. 1035-1045
- [14] J.L. Lacy et al., Boron coated straw detectors as a replacement for ³He, IEEE Nuclear Science Symposium Conference Record (2009)
- [15] R.T. Kouzes, The ³He Supply Problem, Technical Report, PNNL-18388 (2009)
- [16] J.L. Lacy et al., Boron-Coated Straw Detectors: a Novel Approach for Helium-3 Neutron Detector Replacement, IEEE Nuclear Science Symposium Conference Record (2010)
- [17] http://www.proportionaltech.com/new_site/
- [18] D.A. Shea, D. Morgan, The Helium-3 Shortage, Congressional Research Service Report R41419 (2010)
- [19] R.T. Kouzes et al., Boron-Lined Neutron Detector Measurements, Technical Report, PNNL-18938 (2009)
- [20] N. Zaitseva et al., Plastic scintillators with efficient neutron/gamma pulse shape discrimination, NIM A668 (2012), p 88-93
- [21] R.T. Kouzes, J.H. Ely, Lithium an Zinc Sulfide Coated Plastic Neutron Detector Test, Technical Report, PNNL-19566 (2010)
- [22] B.J. Conners et al., ZnO Thermal Neutron Scintillators Designed for High Sensitivity and Gamma-Ray Discrimination, IEEE Nuclear Science Symposium Conference Record (2011)
- [23] R.T. Kouzes et al., Boron-Lined Straw-Tube Neutron Detector Test, Technical Report, PNNL-19600 (2010)