

Anwendungen aktiver Messverfahren in der Mikro- und Nanodosimetrie

Peter Beck AIT Austrian Institute of Technology, Vienna

19. Juni 2012, ÖVS Frühjahrstagung, Wien.

Inhalt

- Mikrodosimetrie und Prof. Harald Rossi
- Anwendungen: Flugdosimetrie Weltraum Medizin
- Aktuelle Entwicklungen in der "Nanodosimetrie"
- Zusammenfassung

Vergleich Standard-Dosimetrie und Mikrodosimetrie

10 MeV Elektronen in Wasser

- Ionisierende Strahlung wird in diskreten Paketen deponiert
- Pakete sind nicht einheitlich im gesamten bestrahlten Volumen verteilt
- Nicht nur die mittlere Energie (Energiedosis, D) ist wichtig, sondern:
 - deponierte Energie
 - Anzahl der deponierten Energie
 - räumlichen Verteilung (Dichte)
- All diese beeinflusst biologische und anderen Strukturen
- => RBE (relative biologische Effektivität)

Harald Rossi (1917-2000): Entwickelte Mikrodosimetrie

- 1917: H. Rossi geboren in Wien
- **1939**: Emigration mit Eltern nach England
- **1942**: PhD in USA
- Arbeitet in Columbia University, Brookhaven National Labs
- **1967 1998**:

Wichtige Publikationen und ICRU Reports

1967 – jetzt: Microdosimetry Symposium (MICROS)

Vergleich Standard-Dosimetrie und Mikrodosimetrie

Nicht-Stochastische Größen Energiedosis: $[D] = Gy = J \cdot kg^{-1}$

Stochastische Größen

energy deposit by an event [ϵ_i] = J, keV energy imparted: [ϵ] = J, keV specific energy: [z] = J · kg⁻¹ (Gy) lineal energy: [y] = keV · μ m⁻¹

µm ~ nm

Sensitives Volumen ("Site Size") in der Mikrodosimetrie

- Wie groß ist das sensitive Volumen?
- H. Rossi: "The dimensions of the volume of interest are those of the regions in the irradiated material where the concentration of absorbed energy determines the probability of a given effect."
- Given effect: "Zellschädigung durch Wechselwirkung mit dem "Zellkern" => Sensitives Volumen: ~µm
- Given effect: "DNA Schaden durch Wechelswirkung mit DNA (SSB, DSB, ...)" => Sensitives Volumen: ~nm

Aktives Messgerät für Mikrodosimetrie

TEPC - Tissue Equivalent Proportional Counter

Ref: Columbia University

"Simulated" Site Size?

mikroskopisches Volume (d ~1µm)

"Simulated" Site Size

"Simulated" Site Size

"Simulated" Site Size

Gewebezusammensetzung für Kammerwand und Zählergas

No.	Name ,	Н	С	Ν	0	F	Na	Mg	Si	Р	S	К	Ca
1	ICRU tissue, muscle (ICRU, 1964)	10.2	12.3	3.5	72.9	_	0.08	0.02		0.2	0.5	.0.3	0.007
2	Muscle-equivalent plastic A 150 (Smathers et al., 1977)	10.1	77.6	3.5	5.2	1.7							1.8
3	Muscle-equivalent gas, with methane (Rossi and Failla, 1956)	10.2	45.6	3.5	40.7				_	-			
4	Muscle-equivalent gas, with propane (Srdoc, 1970)	10.3	56.9	3.5	29.3			_		—	_		
5	Air-equivalent plastic C-552 (Spokas, 1975)	2.5	50.2	_	0.4	46.5		_	0.4				_

TABLE C.1—Elemental composition of muscle-equivalent compounds and mixtures in percentage by weight

Parameter	Muscle-equivalent gas with methane (Table C.1)	Muscle-equivalent gas with propane (Table C.1)		
Density, <i>ρ</i> , at 20°C and 100 kPa (750.1 torr)	1.050	1.798		
$\rho/\frac{\mathrm{kg}}{\mathrm{m}^3}$				
Thickness $ ho d$ at 20°C and 1 kPa (7.501 torr)	10.50	17.98		
$\rho d \left/ \left(\frac{\mu g}{cm^3} \cdot cm \right) \right $	× -			
1 μ m of muscle ($\rho = 1$ g/cm ³) is simulated by a distance of 1 cm in muscle equivalent gas of 20°C and a pressure ρ	9.524 kPa (71.44 torr)	5.562 kPa (41.72 torr)		

TABLE C.2—Conversion	factors	for musc.	le-equival	lent	gases
TABLE 0.2-Conversion	juciors	101 musci	ie-equivai	enu	

Verteilung der linearen Energiedichte, y in 1µm Gewebe aufgrund von Photonen- und Neutronenexposition

Photonen: 60keV - 2 MeV

Neutronen: ²⁴¹AmBe

Ref: Rollet, S., Beck, P., Ferrari, A., Pelliccioni, M. and Autischer, M., Dosimetric considerations on TEPC FLUKA-Simulation and Measurements. Radiat. Prot. Dosim. 110(1–4), 833–838 (2004).

Ref: Rollet, S., Beck, P., Ferrari, A., Pelliccioni, M. and Autischer, M., Dosimetric considerations on TEPC FLUKA-Simulation and Measurements. Radiat. Prot. Dosim. 110(1–4), 833–838 (2004).

Anwendung

1. Referenzdosimeter der kosmischen Strahlung in Flughöhen

TEPC Referenzdosimeter für Messungen im Flugzeug

Verteilung der linearen Energiedichte, y in 1 µm Gewebe durch kosmische Strahlung in 10km Flughöhe

19

Anwendung

2. Referenzdosimetrie im Weltraum

Verteilung lineare Energiedichte, y in 1 µm Gewebe durch kosmische Strahlung auf der Internationalen Raumstation (ISS) für Energiedosis, D und Äquivalentdosis, H

Äquivalentdosis, H

10000

Anwendung

3. Medizin

Untersuchungen mit einem Mini-TEPC in 1µm Gewebe in einem Augenphantom durch Protonenbestrahlung

- Min-TEPC
- 1µm sensitives Volumen

Messungen und Simulation der linearen Energiedichte, y in unterschiedlichen Tiefen des Augenphantoms

Ref: S.Rollet, P.Colautti, B.Grosswendt, J. Herault, M. Wind, E. Gargioni, P. Beck, M. Latocha

and D. Moro, MICRODOSIMETRIC ASSESSMENT OF THE RADIATION QUALITY OF A THERAPEUTIC PROTON BEAM: COMPARISON BETWEEN NUMERICAL SIMULATION AND EXPERIMENTAL MEASUREMENTS, Radiation Protection Dosimetry (2011), Vol. 143, No. 2–4, pp. 445–449 doi:10.1093/rpd/ncq483, Advance Access publication 15 December 2010.

Gemessene und simulierte relative Energiedosis und RBE für SOBP (Spread-Out Bragg Peak), 62 MeV Protonenstrahl

Ref: S.Rollet, P.Colautti, B.Grosswendt, J. Herault, M. Wind, E. Gargioni, P. Beck, M. Latocha and D. Moro, MICRODOSIMETRIC ASSESSMENT OF THE RADIATION QUALITY OF A THERAPEUTIC PROTON BEAM: COMPARISON BETWEEN NUMERICAL SIMULATION AND EXPERIMENTAL MEASUREMENTS, Radiation Protection Dosimetry (2011), Vol. 143, No. 2–4, pp. 445–449 doi:10.1093/rpd/ncq483, Advance Access publication 15 December 2010.

¹Ref: Pihet, P., Menzel, H. G., Schmidt, R., Beauduin, M. and Wambersie, A. Biological weighting function for RBE specification of neutron therapy beams. Intercomparison of 9 European centres. Radiat. Prot. Dosim.31(14), 437–442 (1990).

Aktuelle Entwicklungen aktiver "Nanodosimeter" (besser: Teichenstrukturanalyse im Nanometerbereich)

Nanodosimeter mittels gasgefülltem Einzelionenzähler

Prinzip eines Nanodosimeters für Einzelionenzählung Aufbau eines Nanodosimeters (Weizmann-Institute, Rehovot/Israel, PTB, BRD)

Courtesy: Bernd Grosswendt

Vergleich Wirkungsquerschnitt Doppel-Strangbrüchen in SV40 DNA und Detektor Response von AIT Nano-Radiation-Sensor

Zusammenfassung

- Mikrodosimetrie zeigt wesentliche Vorteile der Beurteilung der absorbierten Dosis in komplexen, gemischten Strahlungsfeldern
- Mikrodosimetrie erfasst die Verteilung der linearen Energiedichte, y
- Aus der Verteilung der linearen Energiedichte, y lässt sich die mittels q (L) die Äquivalentdosis, H bestimmen.
- Mikrodosimetrie wird als Referenzdosimetrie verwendet f
 ür gemischte Strahlungsfelder:
 - Kosmische Strahlung in Flughöhen
 - Kosmische Strahlung im Weltraum (Internationale Weltraumstation, ISS)
- Zukünftige Anwendungen bei:
 - Strahlenfelder durch Beschleuniger
 - Proton, leichte und schwere lonentherapie
 - Weltraummissionen (z.B. Mars, Mond)
- Dosimetriekonzepte im Nanometerbereich zeigen vielversprechende zukünftige Dosimeteranwendungen

Vielen Dank für Ihre Aufmerksamkeit!

Peter Beck

peter.beck@ait.ac.at

Phone: +43-50550-4305

